Water‐CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage

نویسندگان

  • D. Nicolas Espinoza
  • Carlos Santamarina
چکیده

[1] The interfacial interaction between mineral surfaces and immiscible fluids determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Previous studies have shown that the interfacial tension and contact angle in CO2‐water‐mineral systems change noticeably with fluid pressure. We compile previous results and extend the scope of available data to include saline water, different substrates (quartz, calcite, oil‐wet quartz, and polytetrafluoroethylene (PTFE)), and a wide pressure range (up to 20 MPa at 298K). Data analysis provides interfacial tension and contact angle as a function of fluid pressure; in addition, we recover the diffusion coefficient of water in liquid CO2 from long‐term observations. Results show that CO2‐water interfacial tension decreases significantly as pressure increases in agreement with previous studies. Contact angle varies with CO2 pressure in all experiments in response to changes in CO2‐water interfacial tension: it increases on nonwetting surfaces such as PTFE and oil‐wet quartz and slightly decreases in water‐wet quartz and calcite surfaces. Water solubility and its high diffusivity (D = 2 × 10 to 2 × 10 m/s) in liquid CO2 govern the evolution of interparticle pendular water. CO2‐derived ionic species interaction with the substrate leads to surface modification if reactions are favorable, e.g., calcite dissolution by carbonic acid and precipitation as water diffuses and migrates into the bulk CO2. Pressure‐dependent interfacial tension and contact angle affect injection patterns and breakthrough mechanisms, in other words, the performance of geological formations that act as either reservoirs or seals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact an...

متن کامل

Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension (IFT) behaviors of complex supercritical carbon dioxide (sc-CO2) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molec...

متن کامل

Biosurfactant as an Enhancer of Geologic Carbon Storage: Microbial Modification of Interfacial Tension and Contact Angle in Carbon dioxide/Water/Quartz Systems

Injecting and storing of carbon dioxide (CO2) in deep geologic formations is considered as one of the promising approaches for geologic carbon storage. Microbial wettability alteration of injected CO2 is expected to occur naturally by microorganisms indigenous to the geologic formation or microorganisms intentionally introduced to increase CO2 storage capacity in the target reservoirs. The ques...

متن کامل

Effects of a capillary transition zone on the stability of a diffusive boundary layer

In geological storage of carbon dioxide (CO2), the buoyant CO2 plume eventually accumulates under the caprock. Due to interfacial tension between the CO2 phase and the water phase, a capillary transition zone develops in the plume. This zone contains supercritical CO2 as well as water with dissolved CO2. Under the plume, a diffusive boundary layer forms. We study how cross-flow between the capi...

متن کامل

Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010